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Abstract
Using the projector augmented wave (PAW) within the Perdew–Burke–Ernzerhof (PBE) form
of the generalized gradient approximation (GGA), we investigate the effect of hydrostatic
pressure on the structures of zirconium metal at zero temperature. We obtain the ω → bcc
transition at around 26.8 GPa, which is in excellent agreement with the experimental values.
We also find that the ω phase is most stable at 0 K and 0 GPa. This conclusion is supported by
first-principles calculations of Schell et al and Jona et al. The elastic constants of ω-Zr under
high pressures are calculated for the first time. We find that the compressional and shear wave
velocities increase monotonically with increasing pressure and the results are in good
agreement with the available experimental data. The pressure dependences of three anisotropies
of elastic waves are also presented.

1. Introduction

Group IV transition metal zirconium (Zr) and its alloys are
very important materials both from scientific and technological
points of view. Scientifically, the electronic transfer between
the broad sp band and the narrow d band is the driving force be-
hind many structural and electronic transitions in these materi-
als [1–3]. Technologically, these materials have applications in
the aerospace industry due to their light weight, static strength
and stiffness; they do not degrade rapidly as the temperature
increases and they also show oxidation resistance [4]. The me-
chanical properties of these metals and alloys can be greatly
improved by controlling the crystallographic phases present.
Pressure is a very important variable in causing phase transfor-
mations in this kind of materials.

Static high pressure experimental works indicate that, at
room temperature and ambient pressure, Zr is a hexagonal

4 Author to whom any correspondence should be addressed.

close-packed (hcp) structure (α phase). At high temperature
and zero pressure, it transforms martensitically into the body-
centered cubic (bcc) structure (β phase) before reaching
the melting temperature [5], while at room temperature
and under pressure, the hcp phase transforms into another
hexagonal structure called the ω phase (AlB2 type) in the
range of 2–7 GPa [6–14]. At further high pressure, 30–
35 GPa [7, 12, 15, 16], Zr is observed to transform to the bcc
structure.

Shock compression data have also shed light on the
high pressure behavior of Zr. Kutsar et al [17] observed
splitting of a shock wave in Zr, indicating a phase transition
occurring at 6.2–6.7 GPa. Song and Gray [18] noted retained
ω phase in a Zr sample shocked to 7 GPa, allowing the
low pressure transition to be identified as the α–ω transition.
McQueen et al [19] found anomalies in the Hugoniot at
about 26 GPa and indicated phase transitions. Recently, the
pressure of the α → ω phase transition for the high purity
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material was identified as 7.1 GPa by a shock experiment of
Cerreta et al [20].

Theoretically, the phase transitions of Zr have been
the subject of a number of studies using electronic
structure [21–25]. They have generally found a transition from
ω → β at high pressures. However, they found the lowest-
energy phase to be not the hcp phase but the ω phase, contrary
to experimental observation.

On the other hand, elastic properties of a solid are
important because they relate to various fundamental solid-
state properties such as interatomic potentials, equation of
state, and phonon spectra. Elastic properties are also linked
thermodynamically to the specific heat, thermal expansion,
Debye temperature, melting point, and Grüneisen parameter.
The elastic constants provide valuable information about
the bonding characteristic between adjacent atomic planes
and the anisotropic character of the bonding and structural
stability [26, 27]. Up to now, only a few theoretical
methods have been applied successfully to calculate the
elastic constants of α-Zr at 0 GPa, such as the full-
potential linear-muffin-tin orbital (FP-LMTO) method [28],
the ultrasoft pseudopotential method within the generalized
gradient approximation (GGA) [29], the tight-binding (TB)
approach [30], the embedded-atom (EAM) method [31], and
the modified embedded-atom (MEAM) method [32, 33].
However, elastic constants of ω-Zr at high pressures have not
yet been reported.

Therefore, in this work we predict the structure phase
transition and elastic constants of Zr at high pressures using
the projector augmented wave (PAW) method. The predicted
elastic constants are used to study the aggregate velocities
and elastic anisotropy. We find that the compressional and
shear wave velocities increase monotonically with increasing
pressure and the results are in good agreement with the
available experimental data.

This paper will proceed as follows. In section 2, we make
a brief review of the theoretical method. The calculated results
with some discussion are presented in section 3. We finish the
paper with a summary in section 4.

2. Theoretical methods

2.1. Total energy electronic structure calculations

The electronic structure is calculated self-consistently using
the projector augmented wave (PAW) [34, 35] as implemented
in the Vienna ab initio simulation package (VASP) [36].
For the exchange–correlation potential, the Perdew–Burke–
Ernzerhof (PBE) [37] form of the generalized gradient
approximation (GGA) is used. In pseudopotential methods,
the effect of core electrons and nuclei is replaced by an
effective ionic potential, and only the valence electrons, which
are directly involved in chemical bonding, are considered.
The valence electrons for zirconium are in the 4s24p64d25s2

configuration. The �-centered grids of k points of 18×18×16
for α-Zr, 16 × 16 × 18 for ω-Zr and 18 × 18 × 18 for β-Zr are
generated according to Monkhorst and Pack [38].

To get accurate results, the plane wave cut-off is set to
a high value of 500 eV (18.4 au), which was tested to be

Table 1. The strains used to calculate the elastic constants of
hexagonal phase Zr. In the second column, all unlisted elements of
strain tensors are set to zero.

Strains Distortion ρ1
∂2 E(ρ1,γ )

∂γ 2

∣
∣
∣
γ=0

1 ε11 = ε33 = γ C11 + 2C13 + C33 − 2P
2 ε11 = −ε22 = γ 2(C11 − C12 − P)
3 ε11 = ε22 = γ 2(C11 + C12 − P)
4 ε13 = ε31 = γ 4C44 − 2P
5 ε33 = γ C33 − P

fully converged with respect to total energy for many different
volumes. A Gaussian smearing for the occupations is used
with a smearing width of 0.2 eV. Several test calculations
showed the insensitivity of the results with respect to the
actual value of this smearing parameter. The optimization of
the geometry at each volume is performed via a conjugate-
gradient minimization of the free energy, using the Hellmann–
Feynman forces on the atoms and stresses on the unit cell. The
calculations are converged to 10−6 eV/cell and the geometry
relaxation is considered to be completed when the total force
on the atom is less than 0.02 eV Å

−1
.

2.2. Elastic constants

Based on the theoretical method proposed by Sin’ko and
Smirnov [39], we have calculated the elastic constants of c-
BN [40] and MgB2 [41, 42]. Here we give a brief description
of this method.

Consider a crystal compressed by the isotropic pressure
P to the density ρ1 = 1/V1 (where V1 is the distorted
volume from the lattice distortion εi j). Small homogeneous
deformation of this crystal takes every Bravais lattice point �R′
of the undistorted lattice to a new position �R′ in the strained
lattice

R′
i =

∑

j

(

δi j + εi j
)

R j . (1)

For a homogeneous strain, the parameters εi j are simply
constants, independent of �R, where the subscripts i and j
indicate the Cartesian components; δi j is the Kronecker delta.
Since a hexagonal crystal structure possesses five independent
elastic constants, we thus use the five independent strains listed
in table 1. All these strains are non-volume-conserving. The
atomic positions are optimized at all strains where they have
some degrees of freedom. For each strain, a number of small
values of γ are taken to calculate the total energies E for
the strained crystal structure. The calculated E − γ points
are then fitted to the fourth-order polynomial E(ρ1, γ ), and
the second-order derivatives of E(ρ1, γ ) with respect to γ are
easily obtained.

3. Results and discussion

3.1. Zero-temperature phase transition

The enthalpy of zirconium’s structures relative to that of
β phase at high pressures is presented in figure 1 at
zero temperature. From this figure, we find the following.
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Table 2. The lattice constants (Å), bulk modulus (GPa) and its pressure derivative of Zr at zero pressure and zero temperature, compared with
the experimental data and other theoretical results. (Italic numbers indicate values being fixed.)

This work Other calculations Experiments

α a 3.240 3.232 [48], 3.231 [31], 3.202 [46], 3.232 [47] 3.231 [9]
c 5.178 5.182 [48], 5.125 [31], 5.218 [46], 5.147 [47] 5.148 [9]
B0 93.4 97.1 [31], 99.8 [46], 97.5 [47] 97.6 [9], 94 [11]
B

′
0 3.22 3.10 [11]

ω a 5.056 5.050 [48] 5.039 [44]
c 3.150 3.150 [48] 3.150 [44]
B0 101.1 90.0 [11], 109.0 [11], 104.0 [7, 14]
B

′
0 3.27 4.0 [11], 2.05 [7, 11]

β a 3.580 3.577 [48], 3.580 [31] 3.574 [45]

Figure 1. Enthalpy variation as a function of pressure for α and ω,
relative to that of β phase. The enthalpy of the β structure is taken as
a reference level.

(1) ω-Zr is most stable at 0 GPa. This conclusion
is supported by first-principles calculations of Schell et al
[23, 24] and is apparently inconsistent with experiment values.
This obvious contradiction is because our calculation is valid
only at 0 K, while the experimental result is obtained from
room temperature. The disagreement between the theory and
the experiment is likely due to the thermal effect.

(2) The α → β phase transitions occur at about 20.5 GPa;
moreover, when P < 20.5 GPa, ω-Zr is still more stable than
the other two.

(3) The calculated ω to β phase transition pressure is
26.8 GPa, which is in excellent agreement with experimental
data [7, 12, 15, 16, 19] and the full-potential linearized
augmented plane wave (FP-LAPW) results of 28.2 GPa [24]
and 27 GPa [25].

3.2. Elastic constants and elastic anisotropy at zero
temperature

The equilibrium lattice parameters, bulk modulus and its
pressure derivative are obtained by calculating the electronic
static free energy and pressure for different unit cell volumes
and by fitting the calculated data to the Vinet equation of state
(EOS) [43]. The calculated equilibrium lattice parameters,

Table 3. The elastic constants Cij in GPa of α-Zr at T = 0 K and
P = 0 GPa, along with other theoretical values and experiments.
Here C66 = (C11 − C12)/2.

Elastic constants C11 C12 C13 C33 C44 C66

α-Zr 141.1 67.6 64.3 166.9 25.8 36.8
FP-LMTO [28] 153.1 63.4 76.5 171.2 22.4 44.9
DFT [29] 139.4 71.3 66.3 162.7 25.5 34.1
TB [30] 142.0 71.0 71.0 147.0 8.0 35.5
EAM [31] 147.9 66.3 66.2 182.7 39.2 40.8
MEAM [32] 151.5 71.8 66.1 160.6 34.1 39.9
MEAM [33] 152.0 74.0 63.2 153.3 33.2 39.0
Experiments [49] 144.0 74.0 67.0 166.0 33.0 35.0

Table 4. The elastic constants Cij in GPa of ω-Zr at different
pressures and zero temperature.

P C11 C12 C13 C33 C44

0 165.2 75.6 47.5 198.7 30.6
6 202.0 85.1 56.8 235.2 39.6

10 221.1 90.6 60.8 257.4 43.3
15 251.7 103.6 65.9 287.4 47.3
20 275.1 119.4 69.0 298.4 48.8

the bulk modulus and its pressure derivative are displayed in
table 2, along with experimental measurements [9, 44, 45]
and other theoretical results [31, 46–48]. It is seen that
the calculated lattice parameters agree with experiments and
other theoretical calculations to a fraction of one per cent.
The bulk modulus and its pressure derivative are also in
excellent agreement with other available theoretical results and
experimental data.

In table 3, we list the calculated elastic constants of
α-Zr, compared with experimental data and the previous
calculations. Obviously, our results are in accordance
with the experimental values [46] and results calculated by
others [28, 29, 31–33] except for those by Schnell et al [30].

The calculated pressure dependences of the elastic
constants of ω-Zr at zero temperature are shown in table 4. It
is found that the five elastic constants increase monotonically
with the applied pressure. C11 and C33 increase quickly with
the increasing pressure, and C13 has a moderate increase as
well as C12 and C44. The elastic constants C11 and C33 are
important, because they are related to the deformation behavior
and atomic bonding characteristics of the transition metal. It
can be seen from table 4 that C33 > C11 for ω-Zr. The
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Figure 2. Predicted compressional and shear wave velocities of ω-Zr
as a function of pressure. The solid triangles are experimental data of
Liu et al [14].

implication of this is that the atomic bonds along the {001}
planes between nearest neighbors are stronger than those along
the {100} plane.

From elastic constants, we can obtain the bulk modulus
B and shear modulus G according to the Voigt–Reuss–Hill
(VRH) average scheme [50]. Thus, the isotropically averaged
aggregate velocities for compressional (vP ) and shear waves
(vS) are expressed as [51]

vp =
√

(B + 4
3 G)/ρ, vs = √

G/ρ (2)

with ρ the density. The obtained compressional and shear
wave velocities are predicted in figure 2. It is noted that vP

and vS increase monotonically with increasing pressure. The
compressional wave velocities are in good agreement with
the experimental data of Liu et al [14] and the shear wave
velocities are slightly overestimated in comparison with the
experimental values of Liu et al [14], but the whole trend is
in agreement with them.

The acoustic velocities are related to the elastic constants
by the Christoffel equation

(Ci jkl n j nk − ρv2δil)ui = 0 (3)

where Ci jkl is the fourth rank tensor description of elastic
constants, n is the propagation direction, ρ is the density, u the
polarization vector, M = ρv2 is the modulus of propagation
and v the velocity. The acoustic anisotropy can be described as

�i = Mi [nx ]

Mi [100]
, (4)

where nx is the extremal propagation direction other than
[100] and i is the three types of elastic wave index (one
longitudinal and two polarizations of the shear wave). By
solving equation (3) for ω-Zr, one can obtain the anisotropy
of the compressional wave (P)

�P = C33

C11
. (5)

Figure 3. Anisotropies (�P (compressional wave), �S1 and �S2

(shear waves)) of ω-Zr as a function of pressure P. The solid
squares, solid circles and solid triangles with error bars represent
�P , �S1 and �S2, respectively.

The anisotropies of the wave polarized perpendicular to
the basal plane (S1) and the polarized one in the basal plane
(S2) are written as

�S1 = C11 + C33 − 2C13

4C44
(6)

�S2 = 2C44

C11 − C12
. (7)

While for S2 and P waves the extremum occurs along the
c axis, for S1 it is at an angle of 45◦ from the c axis in the
a–c plane. We note that an additional extremum may occur for
the compressional wave propagation at intermediate directions
depending on the values of the elastic constants.

Figure 3 presents the obtained pressure dependences of
three anisotropies of elastic waves. It is found that �P and �S2

descend slightly as pressure increases, while �S1 ascends as
pressure rises. These results can be understood by comparison
to an hcp crystal interacting with central nearest-neighbor
forces (CNNF) [52]. For this model the elastic anisotropy
is independent of the interatomic potential to lowest order in
P/C11, hence the anisotropy is dependent on the symmetry of
the crystal only. We also noted that the value of �P has the
tendency to approach 1.0 gradually, while the values of �S1

and �S2 go away from 1.0. This means that the anisotropies
of the wave polarized perpendicular to the basal plane (S1)
and the wave polarized in the basal plane (S2) become strong,
but the anisotropy of the compressional elastic wave (P) will
gradually weaken with the pressure increasing. These results
indicate that the axial ratio c/a decreases with the pressure
rising and the anisotropy of the bonding between one Zr atom
and its neighbor Zr atoms from different directions will be
weakened.

4. Conclusion

In summary, we investigate the phase transitions of metal Zr
and find that ω-Zr is most stable at 0 GPa and the ω → β
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transition pressure at T = 0 is 26.8 GPa, which is a little lower
compared with experiments. The most likely cause for this
discrepancy is because small amounts of impurities suppress
the experimental phase transition The elastic constants of α-
Zr at T = 0 and P = 0 are in good agreement with
experimental results and previous calculations. The elastic
constants of ω-Zr under high pressures are predicted for the
first time. The isotropically averaged aggregate velocities
increase monotonically with increasing pressure. The pressure
dependences of three anisotropies of elastic waves are also
predicted.
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